
2024-05-02-Free Range Programming

Processes vs. Closures	
2
Banning the use of If-Then-Else	
4
Appendix - See Also	 6

1

Processes vs. Closures

Processes and closures are effectively the same, with processes being better
since they use hardware (MMUs) to protect memory even better.

To me, the issue is memetic, not technical. What I seem to be wanting to say, but,
keep swirling about and not saying, is that subtle, minor changes in notation have
gross effects on what one is able to invent. "Language affects thinking" and all
that, but, what I'm driving at seems to go even deeper.

In this instance, simply thinking about processes as processes instead of as
closures shuts off whole avenues of thought. Processes are associated with
heavy-weight constructs that are only allowed to exist in operating systems and
are soooo inefficient that you'd have to be crazy to use them at the programming
level. UNIX showed that pipelines of processes were quite useful, but, because
processes were used, it seems that the idea has been dropped from common
use. In fact, people seem to think that they can build pipelines using functions -
false. If you simply think about pipelines of closures - instead of pipelines of
processes - new ideas begin to flow.

I seem to have been indoctrinated with the idea of pipelines at an early age. I've
been striving to make processes cheaper to use, so that we could all begin to use
pipelines at the programming level. I'm not afraid to use big, heavy shell-outs
using operating system processes in my designs, since I know that my designs
can be optimized and processes can become as cheap as function calls, i.e.
closures.

This very subtle change in thinking - lack of fear of inefficiency - allows me to
dream up different ways to solve problems. If I think in terms of pipelines, I
immediately jump to thinking about components which immediately suggests
components with multiple inputs and multiple outputs which immediately jumps
to the idea of building software using LEGO® blocks. Aside: I have concluded
that you can't use functions to build LEGO® blocks, you have to use queue-
based units of software. Aside to aside: of course you can build LEGO® blocks
with functions, but the result is relatively clumsy and discourages further thinking
along those lines.

2

Functions imply blocking - the caller must suspend and wait for the callee to
return a value. Components - daemons, servers, statecharts, etc. - don’t imply
blocking. Fire and forget. Components are asynchronous. Functions are
synchronous.

If you begin with thinking that you must use functions, then you strive to solve all
problems in some synchronous manner.

If you begin with thinking that you must use components, then you are free to
plug-and-play and solve problems in an asynchronous manner, and, to apply
synchronization only when necessary.

A network protocol is synchronization. Shaking hands with someone when you
meet them is a protocol. Delaying a meeting until the CEO arrives is a protocol -
you could proceed with the meeting, but, you choose to wait. This is
asynchronous thinking with synchronization layered on top of it. Synchronous
thinking, though, lathers a micro-protocol onto every little step in the process.
You have no choice in the matter - you have to delay the meeting until the CEO
arrives. At best, you wait until the CEO calls and says “go ahead, start without
me” - that’s synchronization, your actions are intimately tied - coupled - to the
CEO’s actions. Everything is Centrally controlled, you have no “free will” and no
freedom to choose. Going further, if the CEO has to deal with some other
important matter and forgets to call, you are left hanging.

3

Banning the use of If-Then-Else

“If-then-else” has been one of the banes of our existence. The concept is too
low-level. To get useful control flows, you have to tie variables into the equation
and, then, you get into the issues of global variables, free variables and those
sorts of things.

On the surface, it seems that “if-then-else” is extremely useful and cannot be a
fundamental problem, because we’ve been indoctrinated to believe in the
existence of if-then-else.

If-then-else was invented to implement conditional values of functions when
using digital CPUs and subroutines. That’s probably why McCarthy called the
programming construct COND.

If-then-else was not originally meant to implement interesting control-flows and to
abstract-away the use of GOTO.

We applied band-aids to our methods of programming CPUs, instead of stepping
back and fixing the underlying problem by banning the use of low-level “if-then-
else”. This is like dispensing Tylenol® to dull pain, while not curing the cancer.

We have applied band-aids to the “problem” of control-flow in CPUs and
subroutines. For example, we declare edicts such as not allowing globals, not
allowing side-effects, etc. These edicts obviously contradict Reality. Servers and
daemons, of course, have side effects, but our band-aids tell us that this cannot
be possible. We become mentally paralyzed by cognitive dissonance. For
example, programmers think that “concurrency is hard” only because our band-
aids weren’t designed to accommodate concurrency, yet, 5 year-old children
learn hard real-time concurrency (piano lessons, reading music) without needing
PhD degrees.

What can we do about this problem? How can we replace the use of if-then-else,
while still achieving useful control flows? We’ve already seen small solutions to

4

the problem of if-then-else in function-based programming , e.g. in various map() 1

functions. These are basically functional expressions of hoary bits of control flow
that happen under-the-hood. We see ideas in FP creeping towards the goal with
concepts like pattern matching.

With developments like OhmJS (based on PEG - parsing expression grammars),
though, we can go whole-hog. We can invent textual syntaxes that express any
control flow that we desire.

OhmJS is, itself, a shining example of convenient expression of a hoary kind of
control flow. Simply looking at an OhmJS grammar reveals a control-flow that
would be hard to implement using if-then-else. OhmJS expresses a backtracking 2

control-flow. “Try this branch, and, if it fails, backtrack and try the next branch...”.  

 I consider function-based programming to be a superset of the current fad of FP-based 1

languages. Function-based programming began in the early days of computing with languages
like FORTRAN and Lisp. It was deemed convenient to use CPU subroutines to fake out
mathematical functions. It appears to have been forgotten that the relationship is a one-way
mapping only - functions can be represented using CPU subroutines, but, CPU subroutines are
not functions.

 confusing2

5

Appendix - See Also

6

See Also
References https://guitarvydas.github.io/2024/01/06/References.html
Blog https://guitarvydas.github.io/
Blog https://publish.obsidian.md/programmingsimplicity
Videos https://www.youtube.com/@programmingsimplicity2980
[see playlist “programming simplicity”]
Discord https://discord.gg/Jjx62ypR (Everyone welcome to join)
X (Twitter) @paul_tarvydas
More writing (WIP): https://leanpub.com/u/paul-tarvydas

https://guitarvydas.github.io/2024/01/06/References.html
https://guitarvydas.github.io/
https://publish.obsidian.md/programmingsimplicity
https://www.youtube.com/@programmingsimplicity2980
https://discord.gg/Jjx62ypR
https://leanpub.com/u/paul-tarvydas

	Processes vs. Closures
	Banning the use of If-Then-Else
	Appendix - See Also

